1,2,5(2,9)3,4(2,9) $42(No, that's incorrect. Try again.HINT: )$43($4255Order of operations requires that you do all of the multiplications before adding or subtracting.)$44($4255You have replaced the variables incorrectly. x = -1 and y = 2.)$46($4255Replace the variables with the given values. Use order of operations. Check.)
Given that x = -1 and y = 2, evaluate 3y - 4x - 5.The value is ? .iT11Given that x = -1 and y = 2, evaluate 3y - 4x - 5.+20Replace x with -1 and y with 2.3(c22c0) - 4(c2-1c0) - 5p+20Perform multiplications+20first, from left to right.= 6 - 4(-1) - 5p= 6 - (-7) - 5p+20Change subtractions to+20adding the opposite.= 6 + 7 + (-5)p+20Perform additions in+20order from left to right.= 9 + (-5)p= 8p
8#20@$43#21@$44_$46
3,5(2,9)1,2,4(1,9)$42(No, that's incorrect. Try again.HINT: )$43($4255Inside the parentheses you must multiply before adding.)$44($4255You have replaced the variables incorrectly. x = -1 and y = 2.)$46($4255Replace the variables with the given values. Use order of operations. Check.)
Given that x = -1 and y = 2, evaluate(3x + 4)(-5y).The value is ? .iT11Given that x = -1 and y = 2, evaluate(3x + 4)(-5y).+20Replace x with -1 and y with 2.(3(c2-1c0) + 4)(-5(c22c0))pFirst we do the operations inside the parentheses beginning with the leftmost set and working to the right.= (-6 + 4)(-5(2))p= (8)(-5(2))p= (8)(-7)p+20Now multiply.= 9p
9#20@$43#21@$44_$46
9(-9,9)10(1,9)11(2,9)12(2,5)13,14(-9,-1)1(-3,3)$42(No, that's incorrect. Try again.HINT: )$43($4255Operate inside parentheses, then apply exponents. Next multiply and finally add.)$44($4755Recall that ka2 = k * (a2).)$46($4255Replace the variables with the given values. Use order of operations. Check.)$47(No, that's incorrect. Try again.HINT: ) n(9p<2)
Given that x = 13 and y = 14, and a = 1 evaluate59(x - 10) + 11y - 12a2.The value is ? .iT11Given that x = 13 and y = 14, and a = 1 evaluate59(x - 10) + 11y - 12a2.Replace x with 13, y with 14 and a with 1.59((c213c0) - 10) + 11(c214c0) - 12(c21c0)2pFirst we do the operations inside the parentheses.5= 9(2) + 11(14) - 12(1)2pApply the exponent.5= 9(2) + 11(14) - 12(3)pcs5= 9(2) + 11(14) - 12(3)Next do the multiplications in order from leftto right.5= 4 + 11(14) - 12(3)p5= 4 + 5 - 12(3)p5= 4 + 5 - 6pChange the subtraction to adding the opposite and add in order from left to right.5= 4 + (5) + (-6)p5= 7 + (-6)p5= 8
8#20@$43#21@$44_$46
9(-9,9)10(1,9)11(2,9)12(2,5)13,14(-9,-1)1(-3,3)$42(No, that's incorrect. Try again.HINT: )$43($4255Operate inside parentheses, then apply exponents. Next multiply and finally add.)$44($4755Recall that ka2 = k * (a2).)$46($4255Replace the variables with the given values. Use order of operations. Check.)$47(No, that's incorrect. Try again.HINT: ) n(9p<2)
Given that x = 13 and y = 14, and a = 1 evaluate59(x - 10) + 11y - 12a2.The value is ? .iT11Given that x = 13 and y = 14, and a = 1 evaluate59(x - 10) + 11y - 12a2.Replace x with 13, y with 14 and a with 1.59((c213c0) - 10) + 11(c214c0) - 12(c21c0)2pFirst we do the operations inside the parentheses.5= 9(2) + 11(14) - 12(1)2pApply the exponent.5= 9(2) + 11(14) - 12(3)pcs5= 9(2) + 11(14) - 12(3)Next do the multiplications in order from leftto right.5= 4 + 11(14) - 12(3)p5= 4 + 5 - 12(3)p5= 4 + 5 - 6pChange the subtraction to adding the opposite and add in order from left to right.5= 4 + (5) + (-6)p5= 7 + (-6)p5= 8
8#20@$43#21@$44_$46
1(-9,-1)2(2,9)3(2,12) $42(No, that's incorrect. Try again.HINT: )$43($4255Operate inside parentheses first. Then multiply the two terms.)$46($4255Replace the variables with the given values. Use order of operations. Check.) n(3e2m<>0)n(3i2/2+=0)
Given that a = 1, b = 2, and c = 3 evaluate51L- 25a1R 1Lb - 12c1R.The value is ? .Give your answer in lowest terms.Use a / for the fraction bar.iT11aGiven that a = 1, b = 2, and c = 3 evaluate51L- 25a1R 1Lb - 12c1R.Replace a with 1, b with 2, and c with 3.51L- 25(c21c0)1R 1L(c22c0) - 12(c23c0)1RpFirst we do the operations inside the parentheses. Change the subtraction to adding the opposite.5= 1L- 25(1)1R 1L(2) + 1L- 12(3)1R1Rpcs5= 1L- 25 (1)1R 1L(2) + 1L- 12(3)1R1R5= 1L2051R 1L(2) + (21)1R5= 1L2051R 1L221RpMultiply.5= R235p
31"/"32#10@$43_$46
1(-9,-1)2(2,9)3(2,12) $42(No, that's incorrect. Try again.HINT: )$43($4255Operate inside parentheses first. Then multiply the two terms.)$46($4255Replace the variables with the given values. Use order of operations. Check.) n(3e2m<>0)n(3i2/2+=0)
Given that a = 1, b = 2, and c = 3 evaluate51L- 25a1R 1Lb - 12c1R.The value is ? .Give your answer in lowest terms.Use a / for the fraction bar.iT11aGiven that a = 1, b = 2, and c = 3 evaluate51L- 25a1R 1Lb - 12c1R.Replace a with 1, b with 2, and c with 3.51L- 25(c21c0)1R 1L(c22c0) - 12(c23c0)1RpFirst we do the operations inside the parentheses. Change the subtraction to adding the opposite.5= 1L- 25(1)1R 1L(2) + 1L- 12(3)1R1Rpcs5= 1L- 25 (1)1R 1L(2) + 1L- 12(3)1R1R5= 1L2051R 1L(2) + (21)1R5= 1L2051R 1L221RpMultiply.5= R235p